

Numerical Optimization

Todd Munson Argonne National Laboratory

Team

- Alp Dener (ANL) Large-scale optimization
- Xiang Huang (ANL) Composite optimization
- Sven Leyffer (ANL) Discrete optimization
- Juliane Müller (LBNL) Sensitivity analysis
- Todd Munson (ANL) Large-scale optimization
- Mauro Perego (SNL) Inverse problems
- Ryan Vogt (NCSU) Discrete optimization
- Stefan Wild (ANL) Multi-objective optimization

TAO Large-Scale Solvers: Preconditioned Nonlinear Conjugate Gradient

Problem formulation

$$\min_{x} f(x)$$

s.t.
$$b_l \le x \le b_u$$

- Continuous and discrete
- Convex and nonconvex
- PDE-constrained
 - Engineering design
 - Data assimilation
 - Inverse problems
 - Design of experiments
 - Simulation-based control
- Data analysis
 - Sparse regression
 - Joint sparsity

minimize
$$f(\mathbf{x}) = \int_0^1 \frac{1}{2} (\mathbf{p}(\mathbf{x}) - \mathbf{p}_{\text{targ}})^2 d\mathbf{x}$$

TAO Large-Scale Solvers: Preconditioned Nonlinear Conjugate Gradient

- Preconditioned nonlinear conjugate gradient can be competitive with quasi-Newton with smaller memory footprint
 - Diagonalized quasi-Newton formula makes a good preconditioner for modern nonlinear conjugate gradient methods
 - Quasi-Newton-based preconditioner reduces reliance on specialized line searches

(a) Comparison preconditioned to nominal methods based on function/gradient evaluations

(b) Comparison preconditioned to nominal methods based on linesearch steplength

(c) Comparison preconditioned to nominal methods based on time

TAO Composite Optimization Solver for Sparse Regression

Developed a solver for composite optimization with a smooth term and a non-smooth joint-sparse regularizer term

$$\min_{\mathbf{l} < \mathbf{x} < \mathbf{u}} \quad \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \tau \|\mathbf{D}\mathbf{x}\|_1,$$

where
$$\mathbf{A} \in \mathbb{R}^{M \times N}$$
, $\mathbf{x} \in \mathbb{R}^{N \times 1}$, $\mathbf{b} \in \mathbb{R}^{M \times 1}$, $\mathbf{D} \in \mathbb{R}^{K \times N}$, $\tau > 0$, and $\|\mathbf{x}\|_1 \coloneqq \sum_{i=1}^N |\mathbf{x}_i|$.

- Construct a smooth approximation and apply the Gauss-**Newton method**
- Provides flexibility to include joint sparsity with a dictionary transform and bounds
- Available in PETSc/TAO 3.11 release
- Solver is scalable and suitable for large-scale joint-sparse regression applications, such as tomography reconstruction
- Demonstrated superior performance compared to widelyused TwIST solver

(a) Ground truth for comparison

(b) Our solver, PSNR = 46.01 dB

TAO Composite Optimization Solver with Joint-Sparsity Regularization

 Developed a solver for composite optimization with a smooth term and a non-smooth joint-sparse regularizer term

$$\min_{\mathbf{L} \leq \mathbf{X} \leq \mathbf{U}} \quad \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{B}\|_F^2 + \tau \|\mathbf{D}\mathbf{X}\|_{2,1},$$

where
$$\mathbf{A} \in \mathbb{R}^{M \times N}$$
, $\mathbf{X} \in \mathbb{R}^{N \times L}$, $\mathbf{B} \in \mathbb{R}^{M \times L}$, $\mathbf{D} \in \mathbb{R}^{K \times N}$, $\tau > 0$, $\|\mathbf{X}\|_F^2 \coloneqq \sum_{i=1}^N \sum_{j=1}^L \mathbf{X}_{ij}^2$, and $\|\mathbf{X}\|_{2,1} \coloneqq \sum_{i=1}^N \sqrt{\sum_{j=1}^L \mathbf{X}_{ij}^2}$.

- Construct a smooth approximation and apply the Gauss-Newton method
- Provides flexibility to include joint sparsity with a dictionary transform and bounds
- Available in next PETSc/TAO release

500 image pixels

Solver is scalable and suitable for large-scale joint-sparse
 Figure: Joint-sparsity recon regression applications, such as hyperspectral image un-mixing struction for hyperspectral

(a) Matrix B: 188 hyperspectral bands for 2500 image pixels

(b) Matrix A: 188 hyperspectral bands of 240 "minerals"

Figure: Joint-sparsity reconstruction for hyperspectral un-mixing. (a) Cuprite sample, 188 spectral bands and 50x50 image pixels. (b) 240 pure spectral signatures. (c) Solution. (d) & (e) Alunite and Pyrophyllite reconstructions.

Xiang Huang, Alp Dener, and Todd Munson (ANL)

Discrete Optimization Methods Design of an Electromagnetic Cloaking Device

Developed a model for designing an electromagnetic cloaking device

$$\begin{split} P(\theta) &= \underset{v}{\text{minimize}} \quad J(u) = \frac{1}{2}||u - u_0(\theta)||_{2,D_0}^2 \\ &\text{subject to} \quad -\Delta u_{\text{Re}} - k_0^2(1 + qw)u_{\text{Re}} = k_0^2qw\cos(k_o(\cos(\theta)x + \sin(\theta)y) \quad \text{in } D \\ &\quad -\Delta u_{\text{Im}} - k_0^2(1 + qw)u_{\text{Im}} = k_0^2qw\sin(k_o(\cos(\theta)x + \sin(\theta)y) \quad \text{in } D \\ &\quad \frac{\partial u_{\text{Re}}}{\partial n} = -k_ou_{\text{Im}} \quad \text{and} \quad \frac{\partial u_{\text{Im}}}{\partial n} = k_ou_{\text{Re}} \qquad \qquad \text{on } \partial D \\ &\quad w = v_n \qquad \qquad \qquad \qquad \text{in } \hat{\Omega}_n \ \forall n = 1, \dots, N \\ &\quad w = 0 \qquad \qquad \qquad \text{in } D \setminus \left(\cup_n \hat{\Omega}_n \right) \\ &\quad v_n = \{0,1\} \qquad \qquad \forall n = 1, \dots, N. \end{split}$$

- Produced robust model that considers multiple angles
- Developed trust-region method to refine relaxed, rounded solutions obtained

(a) Nominal and robust design for 20x20 control mesh

(b) Nominal and robust design for 20x20 control mesh

Application interactions

- NP: Nuclear Computational Low Energy Initiative (NUCLEI) PI Joe Carlson (LANL), Stefan Wild
 - Calibration and optimization of energy density functionals
 - Support and modeling extensions for POUNDERS
 - Integration with UQ (w/ E. Lawrence, LANL)
- HEP: Community Project for Accelerator Science & Simulation (ComPASS4) PI Jim Amundson (Fermilab), Stefan Wild
 - New optimization platform for particle accelerator design
 - Applications and extensions of POUNDERS
- HEP: Accelerating HEP Science: Inference and Machine Learning at Extreme Scales PI Salman Habib (ANL), Juliane Müller & Stefan Wild
 - Development of methods for multi-fidelity optimization
 - Accelerate Bayesian parameter estimation with optimization (w/ R. Gramacy & D. Higdon, VTech)
 - Modeling and solvers for goal-oriented ML-based regression
- HEP: Data Analytics on HPC PI Jim Kowalkowski (Fermilab), Sven Leyffer & Juliane Müller
 - Least-squares problems with integer variables and without derivatives
 - Sensitivity analysis integrated in optimization algorithms for expensive black-box problems
- BER: Probabilistic Sea-Level Projections from Ice Sheet and Earth System Models PI Stephen Price (LANL), Juliane Müller & Mauro Perego
 - Optimization capability in Albany for solving transient large-scale PDE-constrained optimizations problems
 - Integrate efficient optimization methods in BISICLES initialization

